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ABSTRACT

This paper discusses a new approach to controlling 2D local sizing in a bicameral anisotropic mesh. We define bicameral anisotropy
as a mesh size variation of two distinctly different types in two separate chambers or subdomains. The first chamber is controlled
by constant to linear local size functions. The second subdomain is governed by a nonlinear sizing function leading to transitioning
meshes. A controlled advancing front approach is proposed for both triangular and quadrangular meshes with the singular goal of
ensuring a high local quality metric in the first chamber. An H-shock sizing scheme governs the second chamber. Virtual mesh
topology is constructed at the face boundary both at geometry and nodeloop levels to facilitate this type of bicameral meshing.
Results clearly indicate the efficacy of the proposed approach leading to both a well controlled desired size field and high local
element quality.
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1. MOTIVATION

In a large number of industrial finite element analyses
problems ranging from the toy industry to aerospace,
structural designers and analysts have a need to focus on
specific hotspots on the surface of engineering products and
their components. Typically these hotspots represent local
zones of high stress, impact loading, crack growth, areas of
high double curvature or areas where the field parameters
studied are overly sensitive. In the automotive industry, for
example, these areas could represent fillet bends in engine
blocks, valve seats, seam and spot weld locations on certain
areas of the car-body. In the electronic industry, these
hotspots are usually more abundant and can typically
represent small areas of shock and impact in drop-test
simulation (cell phones for example). In the aerospace
industry from leading-edge blade modeling to many nooks
and corners of engine components to tire modeling, there is
a strong need to zoom in on the multi-physics of local areas.

Accordingly, the finite element model for these applications
demand mesh anisotropy. Usually, the mesh anisotropy
desired is bicameral in more than one way. At one level

bicameral anisotropy can be defined as: a) size variation
within the same mesh where some elements are very small
while others may be ten to a hundred times larger and b)
where an average element has a large size variation (some
edges of the element are small while other edges are large).
Typically, most examples of anisotropy in a 2D/3D mesh
bear evidence of both types of size variation. The need for
anisotropy often becomes bicameral in another different
way. This type of size variation is zonal, where size in one
subdomain of a face is either constant or linearly varied
while in the second domain size varies/transitions according
to non-linear functions.

2. INTRODUCTION

Mesh gradation or anisotropic mesh size control is a
relatively new research problem. The first major
investigations started appearing in open literature only in the
late 1990s. A couple of the early investigations focused on
mesh size variation during adaptive finite element analysis
[1][2], where an initial isotropic mesh is used to perform an
initial solve. Next, from the error estimates computed from



the results [3][4] a size specification field is deduced (e.g. at
the vicinity of each mesh vertex, the desired mesh size is
specified) and the initial mesh is refined based on this field
and re-solved. This process is iteratively repeated until
solution convergence is achieved [5]. For surface meshes the
geometric deviation or fidelity error is also computed apart
from the solution error estimate which is a measure of the
gap between the facets of the abstracted surface and the CAD
surface. The problem faced is thus about the ways to control
the mesh size variation or gradation. Borouchaki et al [6]
proposed a two-way procedure to solve this problem of mesh
size variation as a field problem.

Loseille et al [7] used an approximated Hessian-based metric
field for anisotropic mesh adaption. The metric field
approximates the interpolation error of the solution and is
used to determine the local mesh density as well as the local
element rotation and stretching. This was combined with an
a-priori goal oriented error estimate for applications in the
meshing of shock-dominated flows governed by Euler
equations. The main disadvantage of this technique is that it
cannot be applied to localized sub-division algorithms and
therefore is of little practical use for problems of industrial
complexity. Lecht et al [8] generalized a method for
anisotropy detection based on the hessian of the Mach
number to drive output-based adaptation for the
compressible Navier-Stokes equations by using the
derivative of the Mach number to guide anisotropy of the
mesh. However, although the meshes are anisotropic, the
value of the Mach number which governs the anisotropy is
random.

Most mesh sizing algorithms reported in open literature
refine meshes according to a size field computed from
solution error estimates and the deviation of the mesh from
CAD geometry. No particular zone of local refinement can
be defined by the user and the areas of refinement do not
reflect structured, layered, user-controlled meshes of high
quality, especially with quadrilateral elements. The present
paper proposes a novel method to address this problem.

3. BICAMERAL MESHING

To facilitate the localized zonal meshing of a region within
the bounds of a larger global mesh exhibiting a different
element size pattern/function, we enact the concept of
Bicameralism, whereby a local and a residual global
chamber (C1 and C2 respectively) are meshed with different
element size pattern/functions (S1 and S2 respectively), as
shown in figure 1. The parent face, F, may be defined as the
boolean union of the local and residual chambers given by

� = �� ∪ �� (1)

Similarly, the final mesh, M on the parent face can be defined
as the boolean union of the meshes in the local and residual
chambers (M1 and M2 respectively) expressed by

� = �� ∪ �� (2)

For tri meshing the bounds of the local chamber is circular
and square for quad meshing, as shown in figure 1.

4. PROPOSED ALGORITHM

The problem to be addressed is defined by the following user
specified input data data –

i) surface geometry (tessellated)

ii) a global size sg with which the entire surface is
supposed to target

iii) mesh points or points on the surface, on edges and/or
vertices that have a local size definition different from
sg.

iv) a radius or square of influence ( R ) at each point in (iii)
which denote the chamber of influence and

v) (optionally) a size variation function �(�) for each
chamber. If the function is not specified by the user, the
mesher assumes constant size.

The problem at hand, is thus clearly bicameral, i.e. it is split
into two separate chambers with clearly defined boundaries.
Chamber I is called local chamber and is defined by the
radius or square of influence specified by the user around
certain points which are the origins of the local size field.
The source or origin of a local chamber can be of three types
of mesh points -

a) face interior mesh point

b) face vertex

c) edge-interior mesh point

Chamber II represents the rest of the geometry to be meshed
and is called global-residual chamber. In the global-residual
chamber the mesh size first transitions from the local size to
global and then stabilizes to a field normal value which is the
global size of mesh generation.

5. VIRTUAL GEOMETRY CREATION FOR
LOCAL SIZE CONTROL

In order to bound the local mesh size chamber modifications
to the physical domain of the problem, i.e., the boundary of
the local chamber, need to be made. This is done by creating
virtual geometry both on the boundary and interior of the
face around the origin or source of the local chamber.

5.1 Creation of 0D and 1D Virtual Geometry

0D and 1D virtual geometry are created using both finite
element nodes and the parent geometry to efficiently
expedite mesh sizing around mesh points with local size.
This is done using soft-points, virtual-vertices, sub-edges
and loop-segments.



Figure 1 Bicameral Mesh Sizing

5.11 Creation of Local “Soft-Point” limiters

If local size is defined at a vertex or on a mesh point created
in the interior of an edge, we intersect the circle (of the radius
of influence R) with all edges meeting at the mesh point or
vertex as shown in Figure 2. A node is created at the points
of intersection prior to mesh generation. These nodes are
called soft-points. They are “soft” in the sense they are not
required to be created at these locations by the application.
Instead, meshing algorithms create these nodes for the
purpose of pre-seeding edges at specific locations, in this
case as mesher-native vertices called virtual-vertices. A
virtual-vertex is nothing but a soft-point which is a special
type of node. The special property that distinguishes it from
other nodes is that they are semi-permanent – they are not
deleted if the mesh is deleted on the faces that share the edge,
they remain similar to vertices. A virtual vertex can only be
selectively deleted by a meshing function.

5.12 Creation of Sub-Edges

Figure 3 describes the next step, where the edge is virtually
partitioned into segments called virtual sub-edges. In terms
of node-geometry and face-edge association the edge
owning the mesh point is still unique and undivided. For the
purpose of mesh generation, however, it is sectioned into
virtual sub-edges where each sub-edge is meshed as a
separate entity.

(a)

(b)

Figure 2. Local size on mesh point on edge (a) at
the vertex, (b) in the interior.

This allows us to create different size distributions on the
sub-edges. The sub-edge is a child of the geometry edge.
Sub-edges can be deleted at any time if the virtual vertices
on the parent edge are deleted, but the parent geometry edge
will stay intact.

Two virtual-vertices can approach each other as shown in
Figure 4, if there are local size definitions at the two end
vertices of an edge and the radii of influence of both are such
that the circles come close or overlap. In such situations only
one soft-point or virtual vertex is created at the mid-point of
the overlap zone.



Figure 3. Virtual sub-edges.

5.2 Distribution of Local Size Information

Once all mesh points with local size are processed creating
0D and 1D virtual geometry, the faces are ready for mesh
generation. The boundary edges of all faces are discretized
according to the size information they own. Next, the
discretized face-loops, now called node-loops are laid down
in 2D for mesh generation. At this point, the local size
information existing on the mesh point/virtual vertex – the
size value and the radius of influence – need to be applied to
certain boundary segments of the nodeloop. These segments
of the nodeloop will be called loop-segments from here on.

Figure 4. Overlapping circles of influence

6. LOOP SEGMENT GENERATION

Once all virtual geometry is constructed, the face boundaries
are completely discretized, the face is laid down or flattened
into a 2D domain, node-loops defining the boundaries of the
2D area to be meshed are created. Certain segments or parts
of such a node-loop are called loop-segment. A typical loop-
segment is shown in Figure 5. The loop-segment �� basically
defines the part or segment of the face boundary that falls
within the radius of influence bound by soft-point limiters
�� and �� (Fig.5) and can be expressed as

�� = ∑ ���     �� �������� ������  (��, ��)
��
����

(3)

and where l�� denotes the i-th loop-front as described by
the CSALF [9,10] algorithms.

It is important to note that the local chamber has a shape
which is decided by the user. If the user does not specify the
shape of a local chamber, circles are used for triangular



elements and square shape for quadrangular. These two
chamber shapes are used throughout the present paper.
However, the overall algorithm is shape-independent as the
chambers are filled with advancing front meshes which can
cater to any general shape. For most industrial meshes
analysts focus on either circular or square shaped chambers.

6.1 Partial Paving/Advancing Front on Face
Boundary

Paving or Advancing Front [9,10] have been around for the
past three decades and are the most popular of triangular and
quadrangular surface mesh generation algorithms today. The
CSALF algorithms however [11,12], are largely improvised
adaptations where more control is exercised on
advanced/paved layers and the front advancing strategy is
amalgamated with a mesh-area subdivision technique
making it a rather hybrid approach. This hybrid
paving/advancing front strategy is further specialized to
create best quality elements in the local chamber within the
radius of influence.

6.11 Creation of Loop Segments

Since the loop-segment is part of the face boundary that
falls within the radius of influence R, it must be discretized
at the local size along with the circular arc between them. In
Figure 5, the red segment on the face boundary defines the

Figure 5. A typical loop-segment

loop-segment. As expected, the size of discretization along
this segment reflects the local size defined at the vertex. The
area inside the red circular arc defines the portion of the
mesh area or nodeloop inside the radius of influence. The
mesh size in this zone reflects the local size defined. The
blue circles mark the soft-points or virtual vertices created
on the edges incident at the corner vertices s� and s�. These
mark the start and end of the loop-segment and the
intersection of the circle of local size influence and the edges
joining the source or origin of the local chamber.

6.12 Types of Loop Segments

Three types of loop-segments are dealt with, as shown in
figure 6. Two of them are edge-based and the third one is in
the interior of the face. These are :

Vertex-based or edge-end loop-segment

When the local size control is defined at a vertex, the loop
segment covers all edges incident at that vertex. Figure 5
shows a classical vertex-based loop segment for a circular
local chamber. Any edge-based loop-segment is defined by
at least three points – the virtual vertex on connected edge 1,
the vertex of the edges or the origin of the local chamber
where local size is defined and the virtual vertex on
connected edge 2. The loop-segment starts at virtual vertex
A and runs up to virtual vertex B as shown in Figure 6a.

Figure 6. Loop segment types

Edge interior loop-segment

This second type of loop-segment is also defined by 3 points
– starts at virtual vertex A, touches the origin of the local



chamber, the mesh point on the edge and runs up to virtual
vertex B (Figure 6b).

One point loop-segment

The third type of loop-segment is a one-point loop defined
by the mesh point in the interior of the face (Fig.6c).

6.13 Creation of Face-interior Point Loops

Face interior mesh points with local size control are first
appended to the face topology as new one-point loop-
segments. Next, we pave around the point at local size
gradually expanding the area covered by elements to the
circle of influence. This is described in Figure 7,9 and 10.

Once paving stops as we reach the radius of influence R, the
free-edges of the cluster of elements form a closed node-loop
as shown in Figure 10. The boundary of the white shaded
area in Figure 10a and that of the orange shaded area in Fig.
10b define the new loop.

Figure 7 Face-interior point loop

This nodeloop replaces the single-point loop as part of the
face topology. Therefore, in a nutshell, paving/advancing
front of the single point-loop produces a new face interior
loop as output which is added to the face thus altering its face
topology for meshing the residual-global chamber. An
example for how it is done is illustrated in Figure12.

6.14 Creation Partial Paving/Advancing
Front Meshing of Edge Loop Segments

The acronym CSALF stands for Combined Subdivision and
Loop-Front mesher. The mesh area of the face is defined by
node-loops. Every three adjacent nodes form what is called
a “loop-front”. Each loop-front is advanced based on an
angular advancement template and terminated based on
front-type pair based closure stencils [11,12].

When all loop-fronts that form the node-loop have been
advanced, a new nodeloop results. This is how the node-
loops are advanced – the outer moves inwards, the inners
move outward. When they collide, loop-front advancement
is arrested and the remaining mesh area is filled. CSALF
meshers, therefore, are “symbiotic” in the sense they alloy
two distinctly different mesh generation algorithms working
recursively in tandem. Figure 8 shows two examples of loop-

segment paving/advancing front with quadrilaterals and
triangles.

In order to advance the fronts for the loop-segments the same
CSALF meshers are used with more improvisation and
tighter control. For edge-based loop-segments, we resort to
partial advancement of the boundary in the sense elements
are first created only along the length of the loop-segment ��

defined in equation (3). When the circle or square of
influence is all filled with these high quality elements, the
mesher stops meshing chamber I. The free element edges of
the cluster of elements created become a new node-loop
which is inserted/appended to the face topology as shown in
Figures 8-10 for both quadrilaterals (paving) and triangles
(advancing front). The triangles created can be ideally
equilateral or right-angled depending on the user’s choice.

(a)

(b)

Figure 8. Partial paving (a)/ Advancing Front (b)
on faces with local size on a boundary vertex.

The face-inserted loops are next joined up with other interior
loops and the outer nodeloop to create a single connected
nodeloop that represents the residual-global chamber II. The
same CSALF mesher meshes chamber II next.



6.15 Partial Paving/Advancing Front
Meshing of Face-interior Point-Loop

For face-interior single point node-loops, the approach is
different. In case of Advancing Front meshing with triangles,
first six equilateral triangular elements are created around
the point. Advancing loop-fronts continue and more layers
of equilateral triangles result around the mesh point with
local size until the circle of influence is covered as shown in
Figure 10a. Loop-front advancement stops and the new
nodeloop formed by the free element edges of the element
cluster are appended to the mesh area.

Figure 9. Paving/Advancing Front of an edge-
based (vertex) loop-segment resulting in a new

boundary loops.

In the case of paving with quadrilaterals, the question of
direction of loop-front advancement arises, especially when
the shape of the local chamber is expected to be rectangular.
This is not an issue with advancing front meshing with
triangles where the elements grow radially outward in all
directions. Thus, for quads, if a direction vector is supplied
by the user, four quadrilateral elements (2X2) created
oriented along that direction. As paving continues, more
layers of right-angled square elements are added until the
circle of influence is entirely covered (Figure 10b). For
quadrilaterals we create one or two additional layers beyond
the circle of influence to allow for elegant mesh
transitioning.

6.16 Local Chamber Collision

When the sources of local chambers are face-interior and the
local chambers are in fair proximity, chamber collision is
probable. Loop-front advancement is done one layer at time
for each loop. Consequently, as loop-fronts advance from the
origins of two face-interior local chambers as depicted in
Figure 11, collision is detected. As soon as it happens, front
advancement for the chamber in the collision zone is arrested
as shown below.

(a)

(b)

Figure 10. Partial paving (a)/ Advancing Front (b)
on faces with local size on interior point.

Figure 12 depicts the nodeloop boundaries of the colliding
local chambers when their growths are both arrested. These
face-inserted loops are next joined with the outer nodeloop
(and other inner nodeloop). Figure 13 shows the final mesh.

While paving/advancing front mesh generation in chamber I
(as in case described by Figure 6a where three faces meet at
one corner), the mesher first covers all local chambers
(chamber I) of each face connected at the vertex. In case of
the type of local chamber described in Figure 6b, the
chamber is on the face-edge but not shared with other faces,
whereas in Figure 6c, the local chamber is completely
interior to the face.



Figure 11. Chamber collision in the interior of the
face.

Figure 12. Truncated colliding local chambers
joined with the outer face-boundary.

7. BICAMERAL SIZE CONTROL

Bicameral anisotropy can be variegated but at least binary in
the limit. The size in each local ring or square of influence
(local chamber) can vary according to a different local
function. This paper only discusses constant to linear
functions in the local chamber. Let us assume, the mesh size
field in chamber I, is defined by F(I). The center or source of

the chamber is point � from where the desired local size field
originates. The field needs to be varied according to a user-
defined function g, whose domain for a circular shape is
expressed in polar coordinate system as

Figure 13. Final quadrilateral mesh on the face
with interior local chamber origins.

  �(�) =  �(�)   ��  �������� ������ (0, �) (4)

where R = Radius of influence

and redefined for a square shape in a Cartesian coordinate
system as

�(�) = �(�)    �� �������� ������  (� − �, � + �) (5)

Figures 9-12 provide ample examples of such variations in
local size. The sizing function in the residual-global chamber
(also known as chamber II) is a H-shock variation function
expressed succinctly as

�(��) =  ℎ��� (6)

where ℎ��� describes a shock type sizing function which is
explained later in section 7.2.

7.1 Various Aspects of Local Size Control

In contrast with previously reported mesh sizing algorithms
discussed in section 2, this algorithm also provides
numerous user-driven ways to vary or regulate mesh size.
Size variation can be controlled on edges connected to a
vertex with local size even outside the radius of influence, at
least two different triangular element types can be provided
as option, local mesh size control can be made coarser
(Figure 14) instead of finer and finally, within the radius of
influence, thickness of layers can be varied. We provide a
default behavior for each one of these options based on a best
practice standard.



(a) (b)

Figure 14. Coarser local size on the face boundary
(a) and interior (b) in a finer size mesh.

7.11 Mesh Sizing on Edges With Size
Control

To ensure better mesh size transition and element quality,
our algorithm varies mesh size even outside the radius of
influence on edges. Figure 15 explains size distribution
scheme on edges incident on a vertex with local size control.
The mesh size is kept constant at its local value s0 within the
radius of influence R. Over the next 2R length, on all edges
connected to the vertex, the size is varied parabolically up to
50% of the global size sg. Over the remaining length of the
edge mesh size increases from s/g2 to sg following the H-
shock size variation algorithm [6]. Equation family 7
describes the size function g (x) on the edge of length l as

�(�) =  ��    �ℎ���     � ≥ � ≥  ��

          �(�) =  �� + ���  + ��    �ℎ���   � + 2� ≥ � > �

� =  
��� ���

����
and � =  

��� ���

���

�(�) =
��

�
 �(��)    �ℎ���   � ≥ � > (� + 2�)

(7)

Figure 16 shows how controlled, multi-staged bicameral size
variation avoids the local size from over-spilling too far into
the edge and the connected faces. Figure 16a depicts a size
transition with the H-shock method applied immediately
outside the radius of influence on all edges connected to the
vertex with local size. The finer size seems to over-penetrate
into the edges and thus their owning faces. The effect of a
multi-staged controlled size variation as described above
reduces the “spill effect” as shown in Figure 16b. Beyond
length = R on the meeting edges, the size is varied
parabolically over 2R length and graded up to global size
thereafter. Many users prefer the latter scheme while some
might like a less drastic transition as in the former.

Furthermore, the size variation type in stage II (over the
length of 2R) is also optional. Users could use a linear or
geometric progression variation instead of the default
parabolic type. A contrast of geometric progression variation
versus parabolic is demonstrated in Figure 17.

7.12 Control of Triangular Element Types

Two different triangular element types can be provided as
option especially for mesh generation within the radius of
influence on edges. A 90-degree triangle can be used (Figure
8b) optionally although the best element perhaps is an
equilateral triangle (Figure 7).

Figure 15. Mesh size distribution scheme on
edges with local size on vertex.

7.13 Coarser Mesh Size Local Control

The local chamber mesh size does not necessarily have to be
finer than the residual-global mesh size. Mesh size at mesh
points or vertices can be made coarser instead of finer. Our
approach handles such “reverse variation” systems with ease
and elegance. Sizes get bigger within the radius of influence
and reduce to global size outside the local zone. Figure 14b
shows examples of reverse size variation.

(a)



(b)

Figure 16. Size transition effect with controlled
bicameral size distribution s on edges – H-shock
based mesh size transition immediately beyond
radius of influence (a) versus a staged constant-

parabolic-H-shock variation (b)

7.14 Through-Layer Element Thickness
Variation

Bicameral mesh anisotropy by definition allows both
controlled and uncontrolled mesh size variation in the local
and global-residual chambers. For example, within the
radius of influence, thickness of mesh layers can be varied
by any function specified by the user. Figure 18 depicts a
quad mesh on a fan casing (b) where a local box-size
variation is applied at the center of the casing that follows a
Fibonacci function.

(a)

(b)
Figure 17. Size distribution schemes on edges
with local size on vertex – geometric progression
(a) versus parabolic (b)

A total box thickness (2L) of 20 is desired in 6 layers. The
radii �� or half-thickness of each box layer variation can be
expressed by the function family

�� = ���� + (��/ ∑ ��
�
��� )� where the Fibonacci

sequence is expressed as {��}���
� ; �� = 0 and the linear

recurrence equation is
�� =  ���� + ���� with �� =  �� = 1 (8)

The 6-layered local chamber mesh around the blue point of
application on the fan cover is shown in Figure 18a.

(a)



(b)

Figure 18. Six layers of Fibonacci size variation in
a local chamber (a) on a fan casing (b)

7.2 Mesh Size Transition in the Global-
Residual Chamber

Beyond the radius or boxes of influence of the local
chambers lies the global-residual chamber, which is the rest
of the surface area. In this chamber mesh size, on both edges
and faces, is varied/transitioned following the previously
published H-shock algorithm [6]. Borouchaki et al
introduced notions of H-variation and H-shock associated
with a control space and two correction procedures called H-
corrections. Size variation in a control space can be defined
in two different ways - gradient of a size function h, and the
ratio of the Euclidean length of two adjacent edges. The H-
variation measures the gradient of the function h, while H-
shock represents the mesh gradation along an edge PQ and
measures the distortion of interpolation function h along it.
The H-correction factors tune the size variation factor at a
point on the surface in all directions. An H-shock sizing
function is developed based on the size-map or the
background mesh used. For any edge AB of the triangular
background mesh of length lAB in Euclidian space, the H-
shock size for the edge is expressed as

ℎ�(��) = max (
�(�)

�(�)
,

�(�)

�(�)
)

�

��� (9)

which represents the mesh gradation along the background
element edge AB. This is a measure of the distortion of the
sizing function h along the edge. This H-variation can be
defined at the vertices of the background mesh by
considering the measures related to the adjacent edges. An
edge shock (H-correction) correction is also used. The edge

shock correction tries to guarantee that the size shock is
bounded by a certain user defined value β.  

We set out to assume a geometric variation of the size
function

ℎ� =  ℎ�(
��

��
)� and

��� = |��| ∫
�

��  
 . ��   

�

���
(10)

Analytically equation (10) can be recast as

��� = |��|
��� ��

��.��.��� (
��

��
� )

(11)

A dilemma arises when ℎ� > ℎ� and ℎ�  >  β around the 
decision about which one to keep. We vouch for the lower
value. Under this condition, ℎ� is modified as

ℎ���� =  �ℎ� where � =  
�

��(��)
(12)

(a) Vertex A

(b)

Figure 19. Comparison of size transition effect on
a curved face with local size on vertex. H-shock
transition (a) versus Bicameral anisotropy (b).



Figure 19 shows two images of transitioning meshes on a
curved plate with local size on one vertex. The global size
sg = 8 and local size sl at the lower right vertex A = 0.5 with
a radius of influence R = 5.0. Figure 19a shows the H-shock
variation in comparison to bicameral anisotropy in 19b. In
Figure 20. we compare the size variation along the diagonal
line joining opposite vertices of the face starting at vertex A.
With H-shock type variation alone, the size field normalizes
to global size at a much flatter gradient as is evident in the
figure. In the case of bicameralism, the element size sharply
grows to global size outside the zone of local influence.

Figure 20. Comparison of variation in element size
between H-Shock Variation and Bicameral
Anisotropy.

7.3 Weighted Half-Edge Method (WHEM)
Flattening

The present meshing algorithm is developed in 2D and is
employed on the flattened 2D domain of the face. The
Weighted Half-Edge Method for 2D parameterization of a
tessellated 3D face has been developed at Simulation and
Test Solutions, Siemens over the past decade by Beatty &
Mukherjee [13]. The method developed for both linear and
nonlinear problems uses a compromise between conformal
mapping (preserving triangle shape) and authalic mapping
(preserving area or triangle altitude) to generate 2D domains
with highly reduced transformational distortion. The meshes
(both local and global) are generated in this 2D domain and
transformed back to 3D space.

7.4 Controlled Variational Smoothing

The final mesh produced on the entire surface is smoothed
by a variational smoother [14] which applies a variety of
algorithms for node movement depending on the valency of
the node (i.e. the number and types of elements connected to
each node). For both triangular and quadrilateral meshing we
create ideal or perfect quality elements within the radii of
influence. Therefore, care is taken to not disturb them too
much during mesh smoothing. The variational smoother is
modified by inverse length-weighing to ensure mesh size
gradients are not flattened out too much. Inverse length
weighing constrains the smoother within the radii of

influence so as not to disturb the elements created inside
those zones or sub-areas.

8. ADVANTAGES OF ADVANCING FRONT
APPROACH IN BICAMERAL ANISOTROPY

There are many ways of dealing with functional control of
local and global anisotropy and their interaction, where the
field equations varies. The use of a novel advancing front
approach in such problems of bicameral anisotropy, as
described in this paper, has many advantages and unique
properties. Let us try to quantify the benefits in terms of its
performance, efficiency and cost.

8.1 Uniqueness

State-of-the-art mesh sizing algorithms, firstly, are known to
handle triangular meshes effectively. Not much is known
about mesh size control of quadrilateral meshes. Secondly,
the size variation in the mesh with existing algorithms is
governed by a generic field-type or single function solution.
This paper proposes a completely new approach of using a
controlled advancing-front technique with both triangles and
quadrilaterals to handle local size within a radius of
influence. Outside the radius, a more generic field type
approach is used. Furthermore, the local size control
provided is point-based and thus offers size variation with
more accuracy than existing algorithms.

8.2 Flexibility

The proposed mesh size control algorithm is designed to be
flexible. It can handle mesh size control at vertices of edges
and the interior of edges and faces. Being point and radius
based, this size control algorithm is more pin-pointed than
other algorithms both in terms of location and radius of
influence. When zones of local sizing overlap, the algorithm
resolves conflict is an elegant manner by giving proper
weightage to the zones in proportion to the geodesic distance
between them and their radii of influence. Additionally,
since the mesh generated within the radius of control uses a
specific algorithm – advancing front, irrespective of the
global algorithm of mesh generation used, the local mesh
conforms to a particular pattern. This is vastly unlike
existing algorithms where mesh size or grading is expressed
as a field function and the global meshing algorithm follows
it. For different global meshing algorithms the type of mesh
generated within the radius of influence, in such cases, will
look and feel different. With the algorithm we propose, the
mesh within the radius of influence will always look the
same irrespective of the global meshing algorithm.



(a) Mixed dimensional model

(b) Mixed dimensional mesh

(c) Refined mixed dimensional mesh

Figure 21. Mesh refinement around sharp features
in mixed-dimensional meshing

8.3 User Control

A great deal of user control is provided in a pin-pointed
manner. Such accurate user-control also makes it stand apart

from existing methods. First of all, the user gets to control
local mesh sizing on a surface in three specific ways – a) at
a vertex on its boundary b) in the interior of a boundary edge
and c) in the interior of the face at specific locations. Figure
21 describes a typical example of how the aforementioned
functionality is used in industry today. In mixed dimensional
meshing where vast portions of thin-sheet volumes are
represented by mid-surfaces, very often at T-junctions,
where the mid-sheets intersect sharp corners may occur. To
improve the accuracy of the solution in this region it is often
desirable to increase the density of the mesh, as shown in
figure 21c. Secondly, the spread of the local size is
controlled by a radius of influence. Thirdly, the local mesh
produced is layered irrespective of the finite element type.
This provides, as the fourth control option, a tool to the user
to vary thickness of the layer in the first chamber according
to certain standard functions like constant, ramp, sinusoidal
or parabolic.

9. CONCLUSION

This paper introduces a new type of anisotropy called
“Bicameral Anisotropy”. Particularly prevalent in
automotive, aerospace and electronic industries, bicameral
anisotropy is about different size fields in local chambers
versus the residual-global chamber that jointly make up the
entire geometry meshed. The paper discusses, for a two-
dimensional problem, a new approach to controlling local
variable sizing.

The first chamber is controlled by constant to linear local
size functions. The second chamber, which is called the
Residual-Global chamber making up the rest of the
geometry, is governed by a nonlinear sizing function leading
to transitioning meshes. We propose a controlled advancing
front method, in both triangular and quadrangular meshes,
that guarantees very high quality, well-controlled local
quality metric in the first chamber. An H-shock sizing
scheme governs the second chamber. Virtual mesh topology,
and loop-segments are constructed at the face boundary both
at geometry and nodeloop levels to facilitate this type of
bicameral meshing. A wide range of user-control is provided
which can allow for flexibility in varying the size-functions
on both boundary and in the face-interior of the local
chambers. Results clearly indicate the efficacy of the
proposed approach leading to both a well controlled desired
size field and high local quality in a completely automatic
mode.
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